7,612 research outputs found

    Circumstellar rings, flat and flaring discs

    Full text link
    Emission lines formed in the circumstellar envelopes of several type of stars can be modeled using first principles of line formation. We present simple ways of calculating line emission profiles formed in circumstellar envelopes having different geometrical configurations. The fit of the observed line profiles with the calculated ones may give first order estimates of the physical parameters characterizing the line formation regions: opacity, size, particle density distribution, velocity fields, excitation temperature.Comment: 3 pages ; to appear in the proceedings of the Sapporo meeting on active OB stars ; ASP Conference Series ; eds: S. Stefl, S. Owocki and A. Okazak

    Testing collinear factorization and nuclear parton distributions with pA collisions at the LHC

    Full text link
    Global perturbative QCD analyses, based on large data sets from electron-proton and hadron collider experiments, provide tight constraints on the parton distribution function (PDF) in the proton. The extension of these analyses to nuclear parton distributions (nPDF) has attracted much interest in recent years. nPDFs are needed as benchmarks for the characterization of hot QCD matter in nucleus-nucleus collisions, and attract further interest since they may show novel signatures of non- linear density-dependent QCD evolution. However, it is not known from first principles whether the factorization of long-range phenomena into process-independent parton distribution, which underlies global PDF extractions for the proton, extends to nuclear effects. As a consequence, assessing the reliability of nPDFs for benchmark calculations goes beyond testing the numerical accuracy of their extraction and requires phenomenological tests of the factorization assumption. Here we argue that a proton-nucleus collision program at the LHC would provide a set of measurements allowing for unprecedented tests of the factorization assumption underlying global nPDF fits.Comment: 4 pages, 5 figure

    Robust ab initio calculation of condensed matter: transparent convergence through semicardinal multiresolution analysis

    Full text link
    We present the first wavelet-based all-electron density-functional calculations to include gradient corrections and the first in a solid. Direct comparison shows this approach to be unique in providing systematic ``transparent'' convergence, convergence with a priori prediction of errors, to beyond chemical (millihartree) accuracy. The method is ideal for exploration of materials under novel conditions where there is little experience with how traditional methods perform and for the development and use of chemically accurate density functionals, which demand reliable access to such precision.Comment: 4 pages, 3 figures, 4 tables. Submitted to Phys. Rev. Lett. (updated to include GGA

    A computationally efficacious free-energy functional for studies of inhomogeneous liquid water

    Full text link
    We present an accurate equation of state for water based on a simple microscopic Hamiltonian, with only four parameters that are well-constrained by bulk experimental data. With one additional parameter for the range of interaction, this model yields a computationally efficient free-energy functional for inhomogeneous water which captures short-ranged correlations, cavitation energies and, with suitable long-range corrections, the non-linear dielectric response of water, making it an excellent candidate for studies of mesoscale water and for use in ab initio solvation methods.Comment: 6 pages, 5 figure
    corecore